6,249 research outputs found

    A Statistical Prescription to Estimate Properly Normalized Distributions of Different Particle Species

    Full text link
    We describe a statistical method to avoid biased estimation of the content of different particle species. We consider the case when the particle identification information strongly depends on some kinematical variables, whose distributions are unknown and different for each particles species. We show that the proposed procedure provides properly normalized and completely data-driven estimation of the unknown distributions without any a priori assumption on their functional form. Moreover, we demonstrate that the method can be generalized to any kinematical distribution of the particles

    Level-3 Calorimetric Resolution available for the Level-1 and Level-2 CDF Triggers

    Get PDF
    As the Tevatron luminosity increases sophisticated selections are required to be efficient in selecting rare events among a very huge background. To cope with this problem, CDF has pushed the offline calorimeter algorithm reconstruction resolution up to Level 2 and, when possible, even up to Level 1, increasing efficiency and, at the same time, keeping under control the rates. The CDF Run II Level 2 calorimeter trigger is implemented in hardware and is based on a simple algorithm that was used in Run I. This system has worked well for Run II at low luminosity. As the Tevatron instantaneous luminosity increases, the limitation due to this simple algorithm starts to become clear: some of the most important jet and MET (Missing ET) related triggers have large growth terms in cross section at higher luminosity. In this paper, we present an upgrade of the Level 2 Calorimeter system which makes the calorimeter trigger tower information available directly to a CPU allowing more sophisticated algorithms to be implemented in software. Both Level 2 jets and MET can be made nearly equivalent to offline quality, thus significantly improving the performance and flexibility of the jet and MET related triggers. However in order to fully take advantage of the new L2 triggering capabilities having at Level 1 the same L2 MET resolution is necessary. The new Level-1 MET resolution is calculated by dedicated hardware. This paper describes the design, the hardware and software implementation and the performance of the upgraded calorimeter trigger system both at Level 2 and Level 1.Comment: 5 pages, 5 figures,34th International Conference on High Energy Physics, Philadelphia, 200

    Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state

    Get PDF
    A search is performed for anomalous interactions of the recently discovered Higgs boson using matrix element techniques with the information from its decay to four leptons and from associated Higgs boson production with two quark jets in either vector boson fusion or associated production with a vector boson. The data were recorded by the CMS experiment at the LHC at a center-of-mass energy of and correspond to an integrated luminosity of . They are combined with the data collected at center-of-mass energies of 7 and , corresponding to integrated luminosities of 5.1 and , respectively. All observations are consistent with the expectations for the standard model Higgs boson

    Search for dijet resonances in proton-proton collisions at sqrt(s) = 13 TeV and constraints on dark matter and other models

    Get PDF
    A search is presented for narrow resonances decaying to dijet final states in proton-proton collisions at root s = 13 TeV using data corresponding to an integrated luminosity of 12.9 fb(-1). The dijet mass spectrum is well described by a smooth parameterization and no significant evidence for the production of new particles is observed. Upper limits at 95% confidence level are reported on the production cross section for narrow resonances with masses above 0.6TeV. In the context of specific models, the limits exclude string resonances with masses below 7.4TeV, scalar diquarks below 6.9TeV, axigluons and colorons below 5.5TeV, excited quarks below 5.4TeV, color-octet scalars below 3.OTeV, W' bosons below 2.7 TeV, Z' bosons below 2.1 TeV and between 2.3 and 2.6 TeV, and RS gravitons below 1.9 TeV. These extend previous limits in the dijet channel. Vector and axial-vector mediators in a simplified model of interactions between quarks and dark matter are excluded below 2.0 TeV. The first limits in the dijet channel on dark matter mediators are presented as functions of dark matter mass and are compared to the exclusions of dark matter in direct detection experiments. (C) 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

    Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at sqrt(s) = 13 TeV

    Get PDF
    Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb 121 of proton-proton collisions at s 1a=13 TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both strongly and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500\u20131770 GeV are excluded at the 95% confidence level depending on the lightest neutralino mass. In a model of electroweak chargino-neutralino production, chargino masses as high as 610 GeV are excluded when the lightest neutralino is massless. In GMSB models of electroweak neutralino-neutralino production, neutralino masses up to 500-650 GeV are excluded depending on the decay mode assumed. Finally, in a model with bottom squark pair production and decay chains resulting in a kinematic edge in the dilepton invariant mass distribution, bottom squark masses up to 980\u20131200 GeV are excluded depending on the mass of the next-to-lightest neutralino

    Search for supersymmetry in electroweak production with photons and large missing transverse energy in pp collisions at sqrt(s) = 8 TeV

    Get PDF
    Results are reported from a search for supersymmetry with gauge-mediated supersymmetry breaking in electroweak production. Final states with photons and large missing transverse energy ( View the MathML sourceETmiss) were examined. The data sample was collected in pp collisions at View the MathML sources=8TeV with the CMS detector at the LHC and corresponds to 7.4View the MathML sourcefb−1. The analysis focuses on scenarios in which the lightest neutralino has bino- or wino-like components, resulting in decays to photons and gravitinos, where the gravitinos escape undetected. The data were obtained using a specially designed trigger with dedicated low thresholds, providing good sensitivity to signatures with photons, View the MathML sourceETmiss, and low hadronic energy. No excess of events over the standard model expectation is observed. The results are interpreted using the model of general gauge mediation. With the wino mass fixed at 10View the MathML sourceGeV above that of the bino, wino masses below 710View the MathML sourceGeV are excluded at 95% confidence level. Constraints are also set in the context of two simplified models, for which the analysis sets the lowest cross section limits on the electroweak production of supersymmetric particles

    Search for resonant production of strongly coupled dark matter in proton-proton collisions at 13 TeV

    Get PDF
    The first collider search for dark matter arising from a strongly coupled hidden sector is presented and uses a data sample corresponding to 138 fb−1, collected with the CMS detector at the CERN LHC, at s = 13 TeV. The hidden sector is hypothesized to couple to the standard model (SM) via a heavy leptophobic Z′ mediator produced as a resonance in proton-proton collisions. The mediator decay results in two “semivisible” jets, containing both visible matter and invisible dark matter. The final state therefore includes moderate missing energy aligned with one of the jets, a signature ignored by most dark matter searches. No structure in the dijet transverse mass spectra compatible with the signal is observed. Assuming the Z′ boson has a universal coupling of 0.25 to the SM quarks, an inclusive search, relevant to any model that exhibits this kinematic behavior, excludes mediator masses of 1.5–4.0 TeV at 95% confidence level, depending on the other signal model parameters. To enhance the sensitivity of the search for this particular class of hidden sector models, a boosted decision tree (BDT) is trained using jet substructure variables to distinguish between semivisible jets and SM jets from background processes. When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to 5.1 TeV, for wider ranges of the other signal model parameters. These limits exclude a wide range of strongly coupled hidden sector models for the first time. [Figure not available: see fulltext.

    Measurements of t t-bar spin correlations and top quark polarization using dilepton final states in pp collisions at sqrt(s) = 8 TeV

    Get PDF
    Measurements of the top quark-antiquark (tt¯) spin correlations and the top quark polarization are presented for tt¯ pairs produced in pp collisions at s√=8  TeV. The data correspond to an integrated luminosity of 19.5  fb−1 collected with the CMS detector at the LHC. The measurements are performed using events with two oppositely charged leptons (electrons or muons) and two or more jets, where at least one of the jets is identified as originating from a bottom quark. The spin correlations and polarization are measured from the angular distributions of the two selected leptons, both inclusively and differentially, with respect to the invariant mass, rapidity, and transverse momentum of the tt¯ system. The measurements are unfolded to the parton level and found to be in agreement with predictions of the standard model. A search for new physics in the form of anomalous top quark chromo moments is performed. No evidence of new physics is observed, and exclusion limits on the real part of the chromo-magnetic dipole moment and the imaginary part of the chromo-electric dipole moment are evaluated

    Observation of top quark pairs produced in association with a vector boson in pp collisions at sqrt(s) = 8 TeV

    Get PDF
    Measurements of the cross sections for top quark pairs produced in association with a W or Z boson are presented, using 8TeV pp collision data corresponding to an integrated luminosity of 19.5 fb1, collected by the CMS experiment at the LHC. Final states are selected in which the associated W boson decays to a charged lepton and a neutrino or the Z boson decays to two charged leptons. Signal events are identied by matching reconstructed objects in the detector to specic nal state particles from ttW or ttZ decays. The ttW cross section is measured to be 382+117 102 fb with a signicance of 4.8 standard deviations from the background-only hypothesis. The ttZ cross section is measured to be 242+65 55 fb with a signicance of 6.4 standard deviations from the background-only hypothesis. These measurements are used to set bounds on ve anomalous dimension-six operators that would aect the ttW and ttZ cross sections

    Observation of electroweak W+W- pair production in association with two jets in proton-proton collisions at sqrt(s) = 13 TeV

    Get PDF
    An observation is reported of the electroweak production of a W+W- pair in association with two jets, with both W bosons decaying leptonically. The data sample corresponds to an integrated luminosity of 138 fb−1 of proton-proton collisions at √s = 13 TeV, collected by the CMS detector at the CERN LHC. Events are selected by requiring exactly two opposite-sign leptons (electrons or muons) and two jets with large pseudorapidity separation and high dijet invariant mass. Events are categorized based on the flavor of the final-state leptons. A signal is observed with a significance of 5.6 standard deviations (5.2 expected) with respect to the background-only hypothesis. The measured fiducial cross section is 10.2 ± 2.0 fb and this value is consistent with the standard model prediction of 9.1 ± 0.6 fb
    corecore